Calibrating building energy models using supercomputer trained machine learning agents

نویسندگان

  • Jibonananda Sanyal
  • Joshua R. New
  • Richard E. Edwards
  • Lynne E. Parker
چکیده

Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the “Autotune” research which employs machine learning algorithms to generate agents for the different kinds c ©2013 Association for Computing Machinery. ACM acknowledges that this contribution was authored or coauthored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only. ∗Dr. Sanyal is with the Building Technologies Research and Integration Center at the Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6324, Oak Ridge, TN 37831-6324. †Dr. New is with the Building Technologies Research and Integration Center at the Oak Ridge National Laboratory. ‡Dr. Edwards is with the Ad Products’ Platform Measurement group at Amazon.com, Inc., Wainrright (SEA 23), 535 Terry Ave N., Seattle, WA 98109. §Dr. Parker is professor and associate head of the EECS department at The University of Tennessee in Knoxville, Min H. Kao Building, Suite 401, 1520 Middle Drive, Knoxville, TN 37996. CCPE Journal of Concurrency and Computation Practice and Experience Copyright 2013 ACM 978-1-4503-2170-9/13/07. . . $15.00. of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autotune E+ Building Energy Models

This paper introduces a novel “Autotune” methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting bestmatch E+ input parameters in a systematic, automated, and repeatable fashion....

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Evolutionary Tuning of Building Models to Monthly Electrical Consumption

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an “art” which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabi...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Concurrency and Computation: Practice and Experience

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014